Logo Jakob Müller AG

A Jakob Müller Company



(copy 1)











对位芳纶 (芳纶1414)





  • 高效的自清洁作用能够最大限度的减少死区的产生、物料的累积以及降解等现象;
  • 优异的捏合及混合作用利于物料体系均匀同质化;
  • 较低的过程剪切力;
  • 高效的能量传递;
  • 较高的表面更新率;
  • 较大的汽相自由扩散空间;
  • 较大的传热面积,利于准确及均一化的温度控制;
  • 工艺过程可设计为连续化操作;
  • 适合黏稠或高粘度物系的工艺需求;
  • 较宽且可灵活调整的平均停留时间区间;
  • 狭窄的停留时间分布(平推反应)
  • 广泛而灵活的停留时间范围
  • 从实验到工业装置的工程放大可靠且低风险


Titel Beschreibung Sprache Jahr Download
Perfect dissolving technology for very good fiber quality For decades, conventional polymerisation has been the norm in the production of elastomers. The time and cost involved in removing and treating solvents in the final stages of production were acceptable. Yet as pressure builds on manufacturers to reduce operating costs, there is greater urgency to develop processes that can help streamline costs and production techniques. One such effort has yielded extremely promising results. English 2015
Direkt in der Polymerlösung entgasen Der zunehmende Kostendruck macht keinen Halt vor der Produktion von Elastomeren. Gefragt sind intensivierte Prozesse, die unnötige Verfahrensschritte ersparen und sowohl Zeitaufwand wie auch Kosten senken. Nun liefert ein innovativer Ansatz aus der Schweiz, die sogenannte Direct Devolatilization (direkte Entgasung) von Polymerlösungen, vielversprechende Ergebnisse. English 2015
Perfect fiber quality from perfect dissolving technology Fiber, filament, flies and foil are the final products of a complex process of mixing, dissolving, spinning, washing and drying of raw material. Many specialists believe that the spinning part is the only relevant processing step for the final fiber quality. This belief falls short, as the fiber quality also depends on the dissolving step before the spinning step. English 2014
Concentrated dissolving for homogeneous spinning dope In conventional spinning dope production, capacity is typically a function of the maximum processing viscosity the spinning plant can handle. Often the prior dissolving process step is limited by this fact. In a typical wet spinning operation, dope viscosity ranges from 500-2500 Pa ·s (zero shear viscosity at 95 °C) can be handled. For processors looking to meet rising demand with world-sca le plants, the limitations imposed by high viscosity dope sol utions are challenging and costly. List AG, Arisdorf/Switzerland, have now adapted the company's high viscosity processing technology in order to meet the difficult processing challenges of today's high-production fiber lines. The technology can easily handle 20,000-200,000 Pa·s (zero shear viscosity). English 2013
Improved Lyocell dissolving system The Iyo cell fiber process is developed to transform cellulose to a man-made cotton-like fiber. The lyocell process includes a number of processing steps. The dissolving step is the most important one. It represents the heart of the lyocell technology. Kneaders developed by List AG, Arisdorf/Switzerland, are successfully applied for the continuous dissolving step whereby raw materials of different origin can be processed and transferred into a spinabie dope. English 2006
Process flexibility and process safety As world consumption of textile fibers expands with the rapid growth of Asia and other developing countries, sources of fibers other than cotton and rayon must be developed and brought to market to meet demand. Cellulose fibers (Lyocell fibers) can meet these expanding needs because of the specific qualities and characteristics of the fiber, as well as the vast availability of the raw materials. English 2004
Innovative Weiterentwicklung der Lyocell Tehnologie Der LYOCELL-Prozess ist eine moderne umweltfreundliche Möglichkeit zur Umwandlung von verschiedensten cellulosischen Rohmaterialien der Natur in Fasern, Filamente und Folien zur weiteren Verarbeitung in der Textilindustrie, der Verpackungsindustrie oder als Strukturbildner in technischen Anwendungen. Die Nassreißfestigkeit der LYOCELL-Faser übertrifft sogar die der Bauwollfaser. Deutsch 2004
Optimization of cellulose dissolution stage LIST further optimized the cellulose dissolution technology, which was introduced in 1992. This succeeded the production of excellent spinning solution qualities, produced from a variety of low cost raw materials. The technology fulfils the current high safety standards. English 2001
Continous dissolution process of cellulose in NMMO A new dissolution process for cellulose spinning solution was developed. As Basis for the new process served the classic cellulosic fiber production process. In the last 30 years or so the conventional viscose process became environmentally critical. Evaluated with regard to its environmental viability it was found to create considerable water and air pollution. This conclusion ignited the research and development of new technologies with less environmental impact. English 1999